
E-Content on Data Manipulation and

Visualization through Statistical Software R

(Open Source Software)

Dr Gurpreet Singh Tuteja and Dr Dhiraj Kumar Singh
Department of Mathematics
Zakir Husain Delhi College

(University of Delhi)
Jawaharlal Nehru Marg, Delhi - 110002

Day 3: July 29, 2020

1 Session 3

1.1 dplyr Package

Today, we will be learning grammar of manipulations.It provides a consistent
set of verbs that help you solve the most common data manipulation challenges:

mutate() adds new variables that are functions of existing variables

select() picks variables based on their names.

filter() picks cases based on their values.

summarise() reduces multiple values down to a single summary.

arrange() changes the ordering of the rows.

% > % the “pipe” operator is used to connect multiple verb actions together
into a pipeline, also can be seen as a concept of subset in set theory. The
shortcut key for getting this operator is CTRL+SHIFT+M.

The easiest way to get dplyr is to install the whole tidyverse:
install.packages(“tidyverse”)

1



Online workshop ... under the aegis of DBT-STAR college scheme 2

Alternatively, install just dplyr:
install.packages(“dplyr”)
Common dplyr Function Properties All of the above functions we have a
few common characteristics. In particular,

1. The first argument is a data frame

2. The subsequent arguments describe what to do with the data frame spec-
ified in the first argument, and you can refer to columns in the data frame
directly without using the $ operator (just use the column names).

3. The return result of a function is a new data frame.

4. Data frames must be properly formatted In short, there should be one
observation per row, and each column should represent a feature or char-
acteristic of that observation.

1.2 Filter

The filter() function subsets the rows with multiple conditions on different cri-
teria.
Lets begin,consider the built-in data file known as ‘iris’. The structure can be
observed using :
str(iris)

The complete records and variables can be viewed using : View(iris)



Online workshop ... under the aegis of DBT-STAR college scheme 3

The names of the variables or fields or columns can be seen using:
names(iris) The output is :
names(iris)
“Sepal.Length” “Sepal.Width” “Petal.Length” “Petal.Width” “Species”

Following command segregates all species which are labelled ‘setosa’.

setosa ← filter(iris,Species==“setosa”)

This seggragates all species which are labelled ‘setosa’ and further whose Sepal.Length
is greater than 5.5 and Sepal.Width is greater than 4.

iris % > % filter(Species==“setosa”) % > % filter(Sepal.Length>5.5) % > %
filter(Sepal.Width>4)

Some of the data files are built-in and can be used any moment but some files
need to be installed. Consider a data file nycflights13 which need be installed.

install.packages(”nycflights13”)

Now, this file need be loaded using the command which you have used for
loading the package dplyr.

library(nycflights13)
str(flights)



Online workshop ... under the aegis of DBT-STAR college scheme 4

View(flights)

View(airports)



Online workshop ... under the aegis of DBT-STAR college scheme 5

Head Function in R: returns the first n rows of a matrix or data frame
in R
Tail Function in R: returns the last n rows of a matrix or data frame in R
head(flights)

by default it displays a tibble of top 6 rows.

Similarly, tail function displays bottom 6 rows
tail(flights)

sample n(x,n) function is used to take random sample specimens from a data
frame, where
x: Data Frame
n: size/number of items to select
sample n(flights,5)

We can omit dataframe parameter, using piping command:
iris % > % sample n(5)

Let us practice the filter command and see how we can use it for practical
purposes:

This will filter all flights on first day of January.
jan1 ← filter(flights,month==1,day==1)
View(jan1)



Online workshop ... under the aegis of DBT-STAR college scheme 6

Following will segregate all flights flown in November and December.
nov dec ← filter(flights,month View(nov dec)

In case, you wish to see flights in November or December then
View(flights All flights that had an arrival delay of 2 or more hours
filter(flights,arr delay¿=120) % > % nrow()

Count all those flights whose carrier is prefixed by “DL”
filter(flights,carrier==“DL”) % > % nrow()
The output is:
[1]48110

Displays first ten flights:
slice(flights,1:10)

displays all records between January and March:
View(filter(flights,between(month,1,3)))



Online workshop ... under the aegis of DBT-STAR college scheme 7

Displays all records where departure time is NA
filter(flights,is.na(dep time)) % > % View()

1.3 Select()

Records with only those fields which are prefixed by ‘Sepal’
select(iris,starts with“Sepal”))

Records with only those fields which ends with ‘Sepal’
select(iris,ends with“Width”))

1.4 Mutate and Transmute

The mutate() function is a function for creating new variables. For the use of
mutate() function, you need to specify following three things:

1. The name of the dataframe you want to modify.

2. The name of the new variable that you’ll create.

3. The value you will assign to the new variable.

a ← mutate(iris,Sepal = (Sepal.Length + Sepal.Width)/2)



Online workshop ... under the aegis of DBT-STAR college scheme 8

transmute()
The function mutate() compute and add new variables into a data table or
dataframe. It preserves existing variables while transmute() compute new columns
and drops existing variables.
transmute(iris,Sepal.Length,Sepal=(Sepal.Length+Sepal.Width)/2) % > % View()

Let us practice the above commands:
mutate(flights,speed=distance/air time *60) transmute(flights,flight,tailnum,speed=distance/air time*60)

1.5 Group by) and Summarize()

You can create subtotals by combining the group by() function and the sum-
marise() function. Let’s start with an example, where we compute the mean
delaytime.
summarize(flights, delayflight, mean(dep delay,na.rm=TRUE))
Consider the following example where we group the flights by destination and
then summarize the mean delay at a particular destination.
by dest ← group by(flights,dest)
delay ← summarize(by dest,
count=n(),
delay=mean(arr delay,na.rm=TRUE))
View(delay)

Consider another example where we group the iris data with respect to the
Species and then find mean of sepal length.
iris % > % group by(Species) % > % summarize(mean(Sepal.Length)) arrange(iris,-
desc(Sepal.Length),Sepal.Width) % > % View()



Online workshop ... under the aegis of DBT-STAR college scheme 9

Species ‘mean(Sepal.Length)‘
1 setosa 5.01
2 versicolor 5.94
3 virginica 6.59
¿

1.6 Four different types of Join

Finally, we learn here different types of Join.
There are four types of join: join: full join, left join, right join, inner join
Consider following two dataframes:
data1 ¡- data.frame(ID=1:2,X1=c(”a1”,”a2”))
data2 ¡- data.frame(ID=2:3,X2=c(”b1”,”b2”))

Full or Outer Join To keep all rows from both data frames.

Natural or Inner Join To keep only rows that match from the data frames.

Left outer or Left Join To include all the rows of your data frame x and only
those from y that match.

Right outer or Right Join To include all the rows of your data frame y and
only those from x that match.

full join(data1,data2) % > % View()
left join(data1,data2) % > % View()
right join(data1,data2) % > % View()
inner join(data1,data2) % > % View().

That finishes the session 3. The link for Quiz is already available in the message
box, kindly complete it in next 15 mins.


